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L INTRODUCTION

The field of decentralized (distributed) decision making has been an active
area of research for more than two decades {4, 11, 12]. In the meantime, it has
been realized that decentralized decision problems are qualitatively different from
the corresponding decision problems with centralized information. The classical
“counterexample” of Witsenhausen [5,17] in decentralized stochastic control best
illustrates this point. It is safe to conjecture that the prohibitive factor in decen-
tralized problems is not so much the inadequacy of the mathematical tools
presently been used, but rather the inherent complexity (in the broad sense of the
term) of the problems that are usually been formulated. However, this ever-
present complexity is still to be pinned down in a precise mathematical way.
The present paper, which follows the liac of research of [10], should be viewed as
a contribution in this direction. We focus on finite versions of some simple but
fairly typical decentralized decision making problems and characterize their com-
plexity by using the tools of the theory of computational complexity [2,9]. Keep-
ing with the tradition of this theory, we consider ‘'easy” those problems that can
be solved by a polynomial algorithm, whereas we consider NP-complete (or
worse) problems to be “hard”. Ir our opinion, such an approach is a) more satis-
fying intellcctually and b) given the present state of the theory of decentralized
decision making, it will allow us to sytematically identify hard problems and

redirect research efforts to new, easier or appropriately formulated problems.

Overview. |




The main issue of interest in decentralized systems may be loosely phrased
as ‘“‘who should communicate to whom, what, when, etc.”. From a purely logical

point of view, however, there is a question which precedes the above: ‘“‘are there

any communications necessary”? Section 2 addresses the difficulty of the prob- ‘
lem of deciding whether any communications are necessary, for a given decentral-
ized system. We use a formulation of this problem introduced in [10}. We
impose some additional structure on this problem and we are able to determine
the boundary between easy and hard cases. In Section 3 we formulate the
discrete version of the decentralized detection problem and prove that it is, in
general, a hard one. In Section 4 we present and discuss a few problems related z |
to the problem of Section 2, including the team decision problem. Section 5 con-

tains our conclusions. All proofs may be found in the Appendix. [
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0. A PROBLEM OF SILENT COORDINATION

Let {1, ..., M} be a set of processors (decision makers). Each processor &
obtains an observation y;€Y;, where Y; is a finite set. Then, processor § chooses
a decision u; belonging to a finite set U; of possible decisions, according to a rule
u; = 7;(y;), where ~; is some function from Y; into U;. The M-tuple (y,,...,yp)
is the total information available and may be viewed as the “state of the
environment”. For ecach state of the environment, we assume that only certain
M-tuples (uy,...,u3) of decisions accomplish a given, externally specified goal.
More precisely, for each (yy,...yy)EYX....X Yy, we are given a set
S(Y(¥ag)CUX -+ - XUy of salisficing (using the term introduced by H.
Simon [13]) decisions. So, S may be viewed as a function from Y X * -+ XYy,
into 2V1% 7" XU We then ask whether there exist decision rules ~; :Y; — U
(involving no communications) which always lead to satisficing decisions. This
problem was first introduced (for the case M = 2} in [10] and may be formalized

as follows:
Problem DS: Given finite sets Y, ..., Yy, U, ..., Uy and a function
S: Y, X - XYy — g¥ix "'Xl"', are there functions ~;:Y;—=U;, i=1,..M,
such that
(i(yad-ing(yaed) € S(ypentar) Myn - UMIE ViX - XYy ?
(2.1)
We are assuming above that the function S is easily computable; lor exam-

ple, it may be given in the form of table. Also, note that the centralized counter-

part of DS would be to allow the decision u; of each processor depend on the




entire set of observations, in which case the problem would become trivial. Since

DS has a trivial centralized counterpart, any difliculty inherent in DS is only
caused by the fact that information is decentralized. In this sense, DS captures
the essence of coordinated decentralized decision making (silent coordination).
It was shown in {10} that:

a) The problem DS with two processors (M = 2) and restricted to instances for
which the cardinality of the decision sets is 2 (|U;| = 2, ¢ = 1,2)* may be
solved in polynomial time.

b) The problem DS with two processors (M == 2) is NP-complete even if we res-

trict to instances for which | Uy | =2, | Uy | =3.
An extension of the above results is the following:

Proposition 2.1: The problem DS with three or more processors (M >3) is

NP-complete, even if we restrict to instances for which |U; | = 2,4/ 1.

We may therefore conclude that the problem DS is, in general, a hard com-
binatorial problem, except for the special case in’ which there are only two proces-
sors and each one has to make a binary decision. It should be noted that the
difliculty is not caused by an attempt to optimize with respect to a cost function,
because no cost function has been introduced. In game theoretic language, we

are faced with a *‘game of kind”, rather than a “‘game of degree”.

We now turn to special cases of DS, by introducing some more structure

(reflccting the nature of typical practical problems), with the aim of determining

sFor any Baite set A, we let 'A l desote its cardinality.




the dividing line between casy and hard special cases. Moreover, we restrict to
the case of only two processors (M = 2). (Certainly, problems with A > 2 can-
not be easier.)

In the formulation of DS that we introduced earlier, all pairs
(y1,¥2)EY, X Y, are likely to occur. So, the information of different processors
is completely unrelated; their coupling is caused only by the structure of the
satisficing sets S(y,,¥2). In most practical situations, however, information is not
completely unstructured: when processor 1 observes y,, he is often able to make
certain inferences about the value of the observation y, of the other processor

and exclude certain values. We now formalize these ideas:

Definition: An Information Structure [ is a subset of ¥} X Y, We say
that an information structure / has degree (DD,), (D, D, are positive
integers) if:

(i) For cach y, € Y, there cxist at most D, distinct elements of Y, such that

(yl;yQ) € {.

(ii) For each y, € Y, there exist at most D, distinct elements of Y, such that

(y1,90) € I

(iii) Dy, D, are the smallest integers satisfying (i}, (ii).
An information structure [ is called classical if D = D, =1, nested if

D|=long=l.

We now interpret this definition: The information structure / is the set of

pairs (y,,y3) of observations that may occur together. If I has degree (D,D,),




processor 1 may use his observation y, to decide which elements of Y, may have

been observed by processor 2. In particular, he may exclude all elements except
for (at most) D; of them. The situation faced by processor 2 is symmetrical.

If Dy =1 and processor 1 observes y,, there is only one possible value for
¥3. So, processor 1 knows the observation of processor 2. (The converse is true
when D, = 1). This is called a nested information structure because the infor-
mation of one processor contains the information of the other. When
Dy = D, =1, each processor knows the observation of the other; so, their infor-

mation is essentially shared.

By restricting our attention only to pairs (Y,,Y,) € I, we obtain the follow-

ing version of DS:
Problem DSI: Given finite sets Y,,Y,,U,,Us, I C Y;X Y, and a function
S:I— 2U'XU’, are there functions v; : Y; — U;, i=1,2, such that

(m(y)2ly2)) € S(yry2), Vi) €T ? (2:2)

Note that any instance of DS/ is equivalent to an instance of DS in which

S(yny) = Uy X Uy, Mypnya) £ L

That is, no compatibility restrictions are placed on the decisions of the two pro-
cessors for those (y,,y,) that cannot occur. We now proceed to the main result of

this section:

Proposition 2.2:

a) The problem DS restricted to instances satisfying any of the following:
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[

(i) One or more of |U,|, | Uyl, Dy, Dy is equal to 1,

(i) JUy] = | U] =2,

(iii) Dy = Dy = 2,

(iv) Dy = | Uz] =2, (or Dy=| U{|=2),

may be solved in polynomial time.

b) The problem DSI is NP-complete even if we restrict to instances for which

|Uyl =Dy =3, |Ug| =Dy=2.

Note that the above result draws a precise boundary between polynomial
and NP-complete special cases, in terms of D;,| U; |, =1, 2. We have seen that,
in general, DSI is NP-complete even if D, D, are held fixed. There is, however,
a special case of DSI, with D, D, constant, for which an efficient algorithm of
the dynamic programming type if possible:

Proposition 2.3: Let Y|, = Y, = {1,2,...,n}. Let D be a positive integer con-
stant. Consider those instances of DSI for which (1,5) € I implies either
}i-j1 <D or |i-j}>n-D. Then DSI may be solved in time which is polyno-

mial in n.

A condition of the type | -5 | < D,\[4,5) € [ is fairly naturai in certain
applications. For example, suppose that the observations y; and y, are noisy
measurements of an unknown variable z (y.=z+ w;) where the noises w; are
bounded: |w; | <D /2. Similarly, the condition |i-j|<D or |i-j|>n-D,\/

{i,7)€ I, arises i the observations y,, y, are noisy measurements of an unknown

quantized angle: y, = 8 + w; (mod 27 ), where the noises w; are again bounded
D/2.




. DECENTRALIZED DETECTION.

A basic problem in decentralized signal processing, which has attracted
much attention recently [1,6,7,13,14,15] is the decentralized detection {(hypothesis

testing) problem. In this section we consider the discrete version of this problem.

Two processors (sensors) S; and S, receive measurements y; € Y;, 1=1,2,
where Y; are finite sets. (Figure 3.1). There are two bypotheses H, and H, on
the state of the environment with prior probabilities p, and p,, respectively. For
each hypothesis H;, we are also given the joint probability mass function
P(y,,y3| H;) of the observations, conditioned on the event that H; is true. Upon
receipt of y;, processor S; evaluates a binary message u; € {0,1} according to a
rule u; = ~;(y;), where +;: Y; —0,1. Then, u; and u, are transmitted to a cen-
tral processor (fusion center) which evaluates ug= u;A u, and declares
hypothesis H, to be true if ug=0, H, if ug = 1. (So, we essentially have a vot-
ing scheme). The problem is to select the functions 7;, 7, so as to minimize the
probability of accepting the wrong hypothesis. (More general performance cri-

teria may be also considered).

Most available results assume that
Plypys | H))=Ply, | H;) Ply, | H;), i=12 (3.1)
which states that the observations of the two processors are independent, when
conditioned on either hypothesis.* In particular, it has been shown [15) that if

{3.1) holds then the optimal decision rules 4; are given in terms of thresholds for

*Such ad assumption is reasonable in problems of detection of & knows signa! in indepeadent acise, but is typi-
cally violated in problems of detection of an wokaowa signal.
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P(H,y| y;
the likelihood ratio Mﬂ—y—l . The optimal thresholds for the two sensors are
PP, y;)

coupled through a system of equations which gives necessary conditions of
optimality. (These equations are just the person-by-person optimality condi-
tions). Few analytical results are available when the conditional inependence
assumption is removed [7]. The purpose of this section is precisely to explain this

status of affairs.

Suppose that (3.1) holds and let N; denote the cardinality of Y;. Given the
results of [15] there are only N; + 1 decision rules 4; which are candidates for
being optimal. We may evaluate the cost associated to each pair of candidate
decision rules and select a pair with least cost. This corresponds to a polynomial
algorithm and shows that under condition (3.1) decentralized detection is an easy
problem. Without the conditional independence assumption (3.1), however, there
is no guarantee that optimal decision rules can be defined in terms of thresholds
for the likelihood ratio. Accordingly, a solution by exhaustive enumeration could
require the examination of as many as Nt Ny pairs o decision rules. One might
expect that a substantially faster (i.e. polynomial) algorithm is possible. How-
ever, the main result of this section (Proposition 3.1 below) states that decentral-
ized detection is NP-complete even if we restrict to instances for which perfect
detcction (zero probability of error) is possible for the corresponding centralized

detection problem.
We now present formally a suitable version of the problem:

Decentralized Detection (DD): We are given finite sets Y,,Y,; a rational

number K; a rational probability ma : function p : Y XY, — @; a partition

/0
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{A,,A,} of Y; X Y, Do there exist 4;:Y; — {0,1}, =12, such that

Jimm) < K ? Here

Jwmr) = Y plypy) nlyy) wlye) +
(v.¥:)€E A,
+ Y plynye) (1 - mlyy) welys)) (3.2)
(vi,¥2)€ A,

Remarks:

1. In the above definition of DD, think of H; as being the hypothesis that
(¥1,¥2) € A;. Then it is easy to see that J(~,,75) corresponds to the proba-
bility of error associated to the decision rules 7;,75. Note that if a single pro-
cessor knew both y, and y, (centralized information) he could make the
correct decision with certainty. Consequently, the above defined problem
corresponds to the special case of decentralized detection problems for which
perfect centralized detection is possible.

2. If we le¢t K =0, then DD is a special case of problem DS with

| Uy|=| Uy | =2 and is therefore polynomially solvable.

Proposition 3.1: DD is NP-complete.

It should be pointed out that Proposition 3.1 remains valid if the problem is
modified so that fusion center uses some other rule for combining the messages it
receives (e.g. u, = (u,;\/ -uy)), or if the combining rule is unconstrained and the

fusion center supposed to find and use an optimal combining rule.

Let us now interpret Proposition 3.1. Although it is, in a sense, a negative

result, it can be useful in suggesting meaningful directions for future research:

7
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instead of looking for efficient exact algorithms, the focus should be on approxi-

mate ones. (In fact, it is an interesting research question whether polynomial
approximate algorithms for DD exist.) Proposition 3.2 also shows that any neces-
sary conditions to be developed for problem DD will be deficient in one of two

respects:

a) Either there will be a very large number of decision rules satisfying these

conditions,
b)  Or, it will be hard to find decision rules satisfying these conditions.

Another consequence of Proposition 3.1 is that optimal decision rules are not
given, in general, in terms of thresholds for the likelihood ratio, because in that
case an efficient algorithm could be obtained. Of course, this fact can be also
verified directly by constructing appropriate examples. When the condition (3.1)
holds and decision rules are given in terms of thresholds, the decision rule of a
processor can be viewed as a tentative local decision, submited to the fusion
center. In general, however, optimal decision rules are not threshold rules and
this interpretation is no more valid. Rather DD should te viewed as a problem
of optimal quantization of the observation of each processor. In that respect,

Proposition 3.1 is reminiscent of the result of (3], namely that the general prob-

lem of minimum distortion quantization is NP-comp.ete.




IV. RELATED PROBLEMS.

The best known static decentralized problem is the team decision problem
[8,11] which admits an easy and elegant solution under linear quadratic assump-
tions. Its discrete version is the following:

Team Decision Problem (TDP): Given finite sets Y,, Y,, U,, U,, a rational
probability mass function p:Y;XY,~@ and an integer cost function
;Y XY, XU XUy—N, find decision 7 les 4;:Y;—U;, 1=1,2, which minimize

the expected cost

Jnrl =Y Y c(yuyem(yv)elys) p(yvy,y2)
V1E€EY, 9,€Y, )

Another problem related to DS is the following:
Maximize Probability of Satificing (MPS): Given finite sets Y,, Y,, U,
U, a probability mass function p:Y;XYys—Q and a function
S:Y; X Y2—52U'XU’, find decision rules v;:Y; = U;, =1,2, which maximize

J(n2) = P((n(y1)12(y2)) € S(y1,92))
(which is the probability of making a satisfactory decision).

Given an instance of TDP, let
S(yhy2) = {(”11“2) : c(ylvy2v“lvu2)=o}'
If we solve TDP, we also effectively answer the question whether J(71,72)=0.
But this is equivalent to solving the instance of DS associated to the above

definition of S(y,,y;). Therefore, TDP cannot be easier than DS. The same

argument is also valid for MPS. It then follows from Proposition 2.2 that TDP

13




and MPS are NP-hard (that is, NP-complete or worse) even if we restrict to
instances for which | U;|=2, | Uzl_‘—'-3- However, even more is true: it suffices to
notice that the problem DD of the previous section is a special case of both TDP
and MPS, with | U, | = | U, | =2. Using Proposition 3.2, we obtain:

Corollary 4.1: TDP and MPS are NP-hard even if we restrict to instances for
which | U;]|=|Uas|=2. This is true even if the cost function ¢ associated to

TDF is restricted to take only the values 0 and 1.

These results show that unlike the linear quadratic case, the team decision

problem is, in general, a hard combinatorial problera.

k4




APPENDIX

Proof of Proposition 2.1: We will reduce to DS (with |U| =2, M = 3}
the satisfiability problem of propositional calculus with three literals per clause
(3SAT) which is a known NP-complete problem [2]. Given an instance of 3SAT,
let V be the set of literals, C' the set of clauses. We construct an instance of

DS as follows: let

Yi={12.,1V|}, U, ={01}, i=123
Let

S(k k. k) = {(0,0,0), (1,1,1)}, k= 1,.,|V]|.

Finally, we interpret each clause in C as stating that a certain triple of deci-
sions is not in the satisficing set. (For example, the clause (z; \/ -z; \/ z),
translates to the statement that the triple of decisions (0,1,0) does not belong to
S(#,j,k).) It is then easy to see that a satisfying assignment for the variables in

V' exists if and only if the above constructed instance of DS is a YES instance.

a

Proof of Proposition 2.2: a)
(i) It Uy=1 or Uy=1, the problem is trivial. If D, =1, a satisficing

decision rule exists if and only if

T (S(¥1,92) # 0, 'V!lle Yy,
{y2: (y1.¥2) € I}

where  m,(u,,u.) 2 u,. The above condition can be clearly tested in polynomial

time (in fact O(| Y| | Y3|) time).
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(i1) This is the result of {10] mentioned in Section 2.

(iii) Possibly by renaming, let Y, Y, be disjoint sets. Consider the graph
G = (Y, UYyI). (Here Y, U Y, is the set of nodes, I the set of undirected
edges.) Since Dy = D, = 2, each node of G has degree at most 2. Therefore,
the connected components of G are cither isolated nodes, chains or cycles.
Each connected component of G defines a subprohlem and these subproblems
are decoupled. So, without loss of generality, we may assume that G consists
of a single connected component. We may also assume that G is a cycle (Fig.
A1) (If it is a chain we can introduce an additional edge to make it a cycle; this
will not make the problem any casict because a new edge simply allows the pres-
ence of some more constraints.) In that case Y, and Y, have the same number

n of elements. Possibly by renumbering (sce Fig. A.1) we may assume that
I={sa): i =1 .n}Uf{(rad ):i=2..n}U{(l.n)}

1.0t us define

S(tn-1)= {(u,,u;,,)e(’,xuzz A, )€l X s such that

(u_,,;,:) € S(n,n), (u,,,u,:_,) € S(n,n-1), (u,,u;) € S(1.n)
and note that S (1,n-1) i ovaluated in O(| /,|*{ U5]%) time. We now
have:

A1 instance of DSl is a “YL> instance <>

¥1(u|, u; Yoy Uy, u,:) {(u;, u,-') €S(vs), v=1,..n and

/é



(y;, u,-',l) €S(vi-1), f=2,..n and

puesun | ey
A(u,, u; y ooy Uy, u,:_,)[(u,-, %)ES (¢,f), § =1,...,n-1and

(4, ) €S (i,i-1), i=2..,n-1 and (u;, u _,)€S (l,n—l)]

The last expression corresponds to a new instance of DSI in which n has been
replaced by n-1. Proceeding in the same way, the problem will be solved after
at most n similar stages. This is essentially an algorithm of the dynamic pro-

gramming type, with complexity O(|Y,| |U,|? | Uy|?).

Remark: In fact an O([ Y| [Uy[ [Uy| ([U,[+ [Uy|)) solution is possible,
if at each stage of the dynamic programming algorithm we only eliminate one -
rather than two - variables. Also, if G is a chain, an O(]Y,| [UL ] 1Us)])
algorithm is obtained along the same lines.

(iv) . We now suppose that D;= | U,| =2. Let Y, ={L,.,m},
Yo={1,...,n} and assume, without loss of generality, that for each k¥ € Y, there

exist exactly two distinct elements i, j of Y, such that (ki) € I, (k,j) e I.

Note that we have a "YES" instance of DSI if and only if

3 Uy, 4, €Uy vy, v, €U MK i)ET [(ve,u;)ES(K,0)).
(A.1)

Consider also the statement




PP R ETI

A s

e

Ty ty €U M SIE Ve X ¥y MREY, (DT A (K)ETA ints) =>

3v,,€U, [(Uk,ll.') € S(k,l) /\ (vk,uj) € S(k,])]] (A2)

which is equivalent to

Ty, u, €U MELJIEY X Yy [(4;,4)€S (1,5)). (A.3)

where

S'(i.j) = {(zt,u')elfzx Ua: \REY, {[(k,i)el /\ (k)T N i# j]=>

Hvkeul [(Uk,U)ES(k,i) A (v,‘,u')E S(k’.’)]] } (A4)

If (A.1) holds, then it is casy to see that (A.2) holds, as well, with the same
assignment of values to u;,v,. Conversely, assume that (A.2) holds. For each k,
there exists only one pair (i,j) such that the condition [(k,s)el] A [(k,j)€ I] A
[(1#7)] holds. Accordingly, for each k, the clause [(v,4;) € S (k,i)A
(v,u;)ES(k,5)] needs to be checked only for one pair (i,j). Therefore, for each
k, a value of v, which males (A.2) true can be chosen regardless of (i,j) and this

value makes (A.1) true as well.

Therefore, we only need to show that the truth of (A.2) can be decided in
polynomial time. Note that, for each (i,j}, the set S’(:',j) defined by (A.4) may
be constructed in time O(|Y;| |U,|). Moreover there are at most
min { | Y,|%|Y,] } pairs to be considered; so the sets S'(i,j) may be con-

structed in time O(| Y,| |U;| min{ | Y5 |%] ¥, ] }). Once S (i,5) is con-

structed, the statement (u;,u;) € S'(i,j) may be expressed as a set of clauses

/¥




with two literals per clause (the literals are the boolean variables u;,u;; this is
similar to the proof of part (ii), see [10] ). Therefore, deciding the truth of (A.3)
is a special case of the satisfiability problem of propositional calenlus with two
literals per clause (2SAT), which can be solved in linear time (2].

b) Consider the following restricted version of the satisfiability problem for
propositional calculus with 3 literals per clause (3SAT). An instance of this res-
tricted problem (which we call RSAT) consists of the following: a set of boolean
variables F=F,UF, where
F,= {y.-j ti=l,..,m; j =123}, Fy = {z; : { = 1,..,n}; also a set of clauses
C consisting of:

(a) one clause for each i between 1 and m, stating that exactly one of the vari-

ables y;y, 9;2, ;3 is true and

(b) an arbitrary number of clauses of the form (=y,;\/ z;) or (-y;;\/ ~z;). It was
shown in [10] that RSAT is NP-complete and that RSAT is equivalent to DS
with | U,|=3, | Us|=2. It will be useful to point out the reasons for the latter
fact: think of the observation sets Y, and Y, as being equal to {1,..,m} and
{1,..,n}, respectively. Which of the variables y,; ¥;2 4,3 is true determines
whether 7,(7) is equal to 1,2,3; similarly, the value of z, determines whether ~,(k)
is 0 or 1. Finally, a clause of the form (-\y,-,-\/ 1, ) would indicate that a certain

pair of decisions is incompatible, i.e. does not belong to S(i,k).

Let us now introduce a graph with nodes ¥ |UF5 and edges

/9




[ = {{i k) : =} j such that (-~y;\f z,) € C or (~y;; \/ ~g) € C}.

From this graph we may obtain a new one by lumping together (for each

i € {1,..,n}) the three nodes y;,, ¥;2, ¥;3 into one node y;. Let H (respectively

H,) be the maximum degree of nodes of type y; (respectively z,) in this new

graph.

We have indicated above a one-to-one corresporydence between instances of

DS and RSAT. With this correspondence, it is not hard to see that if we have

an instance of DS of degree (D,,D,), then the numbers H,, H, obtained from the

sociated instance of RSAT are actually equal to D,D,, respectively. (The con-

verse is also true.)

For this reason, it only remains to prove the following:

Lemma A.l: RSAT is NP-complete, even if it is restricted to instances for

which }I‘ = 3, H2 = 2.

Proof: Given that RSAT is NP-complete [10], it is sufficient to start with a gen-

eral instance of RSAT and reduce it to a new instance for which H| =3,

He =2 holds. This is accomplished by creating multiple copies of each variable

so that, instead of having the same variable appear in many clauses, distinct

copies of it are Lsed. Of course, some clauses will be needed to create the multi-

ple copies but these can be kept to a small number. The idea of the proof is best

shown diagramatically, as in Figure A.2. (A more formal argument may be found

in [16] but the present one is casier to visualize.)

Let y;y, Yo, 3:3 be variables in a given instance of RSAT. We introduce

some new z-variables, as well as some clauses which guarantee, for example (see




Fig. A.2), that z,=y;,, 2o=y;9, 23=2¢=27=2,9=Y,3- (For example, the clauses

(2 =z A (mz5 V) ~zg) A (mzg W z4),

togéther with a requirement that exactly one of the variables z,,z5,25 is true,

imbliés zv3=zs.)* In this way we can effectively create an arbitrary number of
; copi;‘s of th'e y;variables and the same procedure works for the x-variables as
well. Note that in doing so, we have respected the requirement H, = 3, H, = 2.
Finally,l for ez;ch clause in the original instance of RSAT, we may introduce a
clause involving appropriate copies and it is easy to see that the requirement
IIl..-; 3, Hy = 2 will be still respected, as long as we use a different copy each
time.. Moreover, since an arbitrary number of copies may be created by the

above procedure, an arbitrary number of clauses for the original instance of

RSAT may be thus handled. O

Proof of "Pro'position 2.3: This proof is eflectively a generalization of the
dynamic programming argument in the proof of part (a) (iii) of Proposition 2.2.

3 Let us assume that n > 2D. For any k such that 2D < k< n,let

I(k) = {(“hvlv"avv_zv--'v“Dvav“k—D+lv”k—D+h--w“kv”b) € (Uy X Uy)*P .

| 3 (4p4y 1,94 1 U-p th_p) € (Uy X Up)**P such that

® The arcs in Figure A.2 indicate the variabies that bave a common clause; solid lines indicate that twe vari-
ables are conntrained Lo be equal; & curve encircling a triple of variables in F 1 indicates that these are Lo be
merged to a single node.
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(4, v;) € S(i,§), Vli,j) € {L,.. B2 A T }

Note that T(k) is of size at most | U, | 22 | Uy | 2P. Now assume that

2D < k < n-1and let

I“(k+ 1) = {(ul,v,,uz,vz,...,up,vD,uk_D+ 1Y-D+ 11 ¥ks pU4 1) € (Up X U2)20+2 .

I (upy 1,%p4 1 %0 %-p) € (U X Ug)"’w such that
(w,9;) € S(i,5), V(i) € {L..k+ 112N 1

Using the assumption | i-j | < D, or |i-5|2>n-D,A/(¢,5) € I, we can

see that

{1,...k+1}3N T C {1,k N U Ay,

where
Ay = {1,..,D k-D+1,....k+ 1}?

Witk this observation, I'(k+ 1) may be rewritten as

fk+1) =

{(“lr”lr"z'”:.’r-~-r“Der:“L--D+ DD 1By pUe ) € (Uy X Ug)?P+2:

(ul,v,,uz,vz,...,uD,vD,uk_D,, 12%-D+ ,,...,u,,,v,() € r (k) and

(v;,9;) € S(1,5), VV(i,5) € Apyy

A:suming that the set I'(k) has tezen computed, we'may use it to evaluate
I' (k4 1) as follows: for each clement of T'(k) (at most | U, | 22 | Uy | %2 ele
meats) try each pair (w0, ) € Uy X Usg (| Uy | Uy | pairs) and check

for each (1,5) € Ayy sNI (A4, has at most 4D? elements) whether (%.v)€




S(i,j) holds. Therefore, given TI'(k), we may obtain [(k+1) in time

O (D% | U, | 2+' | U, | *+Y) . Finally, from ['(k+ 1) we may easily obtain
I'(k+ 1), by taking a projection so as to eliminate v,_p,, v _py, - This pro-
cess may be repcated (for no more than n stages) to compute I'(n}), in time
O(nD? | U, | 22+t | Uy | 2P*!). Then note that we have a YES instance of

DSIifandonly if '(n) 20 . O

Remark: The algorithm in the proof of Proposition 2.3 does pot find a
satisficing decision rule; it only determines whether one exists. However,
satisificing decisions rules may be computed by keeping in the memory some of

the intermediate results produced by the algorithm.

Proof of Proposition 3.1: Consider the following problem of propositional
calculus, which we call P:

Problem P: We are given two sets X = {z,...,z, }, Z={z,,...,2, } of boolean
variables; a set D of (distinct) clauses of the form z;A z; or ~(z;A 2;) (we assume
that for any pair (¢,5) at most one of the above clauses is in D); a collection
{g;j: ¢ €{1,...,m}, jE{},.,n}} of non-négative integers and an integer K. Is

there a truth assignment for X and Z such that J< K, where

JAE Y e+ X e, (A.5)
2, Az =0 s A2 m)
“vi)e AI ('.oj)e Ao

A, = {(i,§): the clause ~(z;A z;) is in D},
A, = {(4,§): the clause (z;A z;) is in D}’

o 80, J is the sum of the weights q,-,- of the clanses that are net satished.
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Lemma A.2: Problem P is equivalent to DD.

Proof: Think of X, Z as being the sets of observations of processors S;, S,,
respectively. A truth assignment to X,Z corfesponds to a choice as to what
binary message to transmit to the fusion center, given each processor’s observa-
tion. Let H, (respectively H) be the hypothesis that (f,7)€ A, (respectively
A}). Finally, view g¢;;, as the (unnormalized) probapility that the pair (i,5) of
observations is obtained by the two processors. Pairs (¢,5)} that belong to neither
A, nor A, may be viewed as having zero probability and are, therefore, of no
concern. Then, it is easy to verify that J, as defined by (A.5) is precisely the

(unnormalized) probability of error. O

In order to complete the proof of the Proposition, we need to show that P is
NP-complete. This will be accomplished by reducing to P the following (Max-
imum 2-Satisfiability) problem of propositional calculus which is known to be

NP-complete (2]

MAX-2-SAT: Given a set U of boolean variables, a collection C of (distinct)
clauses over U, such that each clause ¢€C has exactly two variables and an
integer K < | C |, is there a truth assignment for U which simultaneousiy
satisfies at least K of the clauses in C? (Without loss of generality, we assume

that if a clause is in C, then its negation is not in C).

Suppose that we are given an instance (U,C,K) of MAX-2-SAT. We con-
strnct an instance of P as follows: Suppose that U = {u,,...,u,}. Then, let

N={r Loty i=1,..,n} and Z = {z,,29%3:1i=1,..,n} . For each




§ € {1,...,n} introduce the set D; of clauses:

AN z9), (%A z2), (3o 71), (23 29),

oA zi3), (73 z1), (za 23), (73 2i3)
To these clauses we assign the weights (L is a large integer to be determined

later):

G2 =30L qo;0=15L, ¢,y =4L, ¢;3,2= 20L

%2i3 = 814! q|'3,|'l = 21”* qc'l,|'3 = 251" 01'3,4'3 = 100L

Next, for each clause (v, A u;), (-, A w), (~w; A ~v), (4 u),
(~u\ w), (~%\/ -u;) in C (with # < j), introduce clauses (z;,A z;,),
(ZaN 21) s (mal\ zj2) s ~(Za 2j9), ~(Zy\ z9), (7 A ;) respec-

tively. Denote this last set of clauses by D,, and assign to each one unit

weight. We now let D = 0 D; and observe that X,Z,D,{q,-,-}, K define an
1==0

instance of P.

Note that for any assignment for X,Z, the corresponding cost (equation

(A.5)) may be decomposed as

J=J+ 3 4, (A6)
{oa}

where Jj, l€{0,1,...,n} is the sum of the weights ¢ of the clauses in Dy which

are not satisfied.

Lemma A.3: For any ¢ € {1,...,n}, we have J; = 35L if and only if either of




the following is true:

i
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I
=
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(i) za = z;0 = 2;3
For any assignment to {z;, z; : t = 1,2,3} other than the two assignments
above, J; > 37L.
Proof: By direct evaluation of J; for each possible assignment. See [16]. O

In view of Lemma A.3, the clauses in D; and their associated weights have
the following interpretation: the variable z;; may be freely assigned, but the
remaining variables must be assigned so that z;; = 2, = ~z;; = —~z;;. For this

reason the clauses in D, are eflectively the same as the original set C of clauses.

Lemma A.4: Let L be large enough so that | C| <L. Then, there exits a truth
assignment for {/ for which at least K clauses in C are satisfied, if and only if
there exists a truth assignment for X 7 such that the resulting cost J is less or
equal than 35nL + |C| - K.

Proof: (i) Given an assignment for U, with at least A clauses satisfied, assign
the variables in X, Z as follows:

=2 = Uy, Xp=13="U, Iy=:53=1

Using Lemma A.3 and the identity (A.6), the resulting cost is 35nL (i.e. 35L
from each collection £;, f==1,...,n} plus the number of clauses in D, which are
not satisfied (since these carry unit weight). The latter number is identical to the

number of clauses in ' which are not satisfied, which is less or equal than

|| K.

|



(i) Conversely, given an assignment for X,Z such that J < 35nL + | C | -K,
suppose that for some ¢ € {1,...,n}, J; > 37L. Using Lemma A.3 and the ine-

quality | C | <L, we obtain

J > Y J >35nL+2 > 3L+ | C|-K

=1

which is a contradiction and shows that J; =35L, 4/ +¢. Consequently,
{£i1,%;2,:2: 1,42} have been assigned values in one of the two ways suggested by
Lemma A.3. We now assign truth values for U, by setting v; = z;,. Then J, 1s
the number of clauses in C which are not satisfied. Moreover, since
J; =35L,i € {1,...,n}, it follows that J, < | C | -K, which implies that at
least K clauses in C are satisfied. This completes the proof of Lemma A.4.

O

It is easy to see that the above reduction of MAX-2-SAT to P is polyno-

mial. Therefore, P is NP-complete and so is DD, thus completing the proof of

the proposition. 0O
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Figure 3.1

A Structure for Decentralized Detection

Figure A.1

A Bipartite Graph Consisting of a Single Cycle

Figure A.2

The Construction of Copies of the Original Variables




Figure 3.1

A Structure for Decentralized Detection
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Figure A.2

The Construction of Copies of the Original Variables







